考研

2022考研数学复习辅导:28个易错点盘点-高等数学

时间:2021-05-21 来源:网络 浏览: 分享:

      2022考研数学复习中,易错点是考试中同学们需要当心和及时躲避的“雷区”。文都网校考研为各位考研人带来考研数学复习辅导《28个易错点盘点-高等数学》,希望为大家2022考研提供帮助!【文末领资料】

      高等数学

      1.函数在一点处极限存在,连续,可导,可微之间关系。对于一元函数函数连续是函数极限存在的充分条件。若函数在某点连续,则该函数在该点必有极限。若函数在某点不连续,则该函数在该点不一定无极限。若函数在某点可导,则函数在该点一定连续。但是如果函数不可导,不能推出函数在该点一定不连续,可导与可微等价。而对于二元函数,只能又可微推连续和可导(偏导都存在),其余都不成立。

      2.基本初等函数与初等函数的连续性:基本初等函数在其定义域内是连续的,而初等函数在其定义区间上是连续的。

      3.极值点,拐点。驻点与极值点的关系:在一元函数中,驻点可能是极值点,也可能不是极值点,而函数的极值点必是函数的驻点或导数不存在的点。注意极值点和拐点的定义一充、二充、和必要条件。

      4.夹逼定理和用定积分定义求极限。这两种方法都可以用来求和式极限,注意方法的选择。还有夹逼定理的应用,特别是无穷小量与有界量之积仍是无穷小量。

      5.可导是对定义域内的点而言的,处处可导则存在导函数,只要一个函数在定义域内某一点不可导,那么就不存在导函数,即使该函数在其它各处均可导。

      6.泰勒中值定理的应用,可用于计算极限以及证明。

      7.比较积分的大小。定积分比较定理的应用(常用画图法),多重积分的比较,特别注意第二类曲线积分,曲面积分不可直接比较大小。

      8.抽象型的多元函数求导,反函数求导(高阶),参数方程的二阶导,以及与变限积分函数结合的求导

      9.广义积分和级数的敛散性的判断。

      10.介值定理和零点定理的应用。关键在于观察和变换所要证明等式的形式,构造辅助函数。

      11.保号性。极限的性质中最重要的就是保号性,注意保号性的两种形式以及成立的条件。

      12.第二类曲线积分和第二类曲面积分。在求解的过程中一般会使用格林公式和高斯公式,大部分同学都会把精力关注在是否闭合,偏导是否连续上,而忘记了第三个条件——方向,要引起注意。

           以上有关2022考研数学复习的文章内容由文都网校考研整理编辑,希望能为大家备考提供帮助。更多考研动态、资讯尽在文都网校考研频道!有问题找文都☞☞☞详情咨询入口 >>>

      推荐阅读:

    历年真题下载

    公共课历年真题及答案解析电子版 (2011~2021)
    专业课历年真题及答案解析电子版 (2016~2021)
    2022考研备考资料包 考研政治框架图.pdf
    考研英语大纲词汇.pdf
    考研数学公式大全.pdf
    考研英语1500高频词汇.pdf
    考研英语作文模板电子版.zip

     

     

    文都2023考研福利群:1009102006【加群

    文都2023考研交流群:690522225【加群

    文都2024考研交流群群:1095571237【加群

    文都四六级资料分享群:671078088【加群

    热门课程
    热文排行