考研

近十年考研数三真题分析:无穷级数部分

时间:2014-01-07 来源:文都教育 浏览: 分享:

       >>>>点击进入:文都2014考研真题及答案解析专题 <<<

      无穷级数是微积分的重要组成部分,是函数从有限形式表达式向无限形式表达式过渡的重要方法。 这部分重点考查的内容和需要具备的能力有:

      1) 常数项级数的收敛与发散的概念,基本性质与收敛的必要条件;

    2) 熟知常用级数的敛散性:主要包括几何级数、P级数的收敛性;

      3) 能够识别数项级数的类型,具备综合利用性质和判别方法判断级数收敛性的能力;

      ① 判断抽象型级数的收敛性(2011年(3)题;2013年(4)题);

      ② 判断具体型级数的收敛性;

      ③ 交错级数和任意项级数要会先判断其是否绝对收敛,还是条件收敛(2012年(4)题);

      4) 会计算幂级数的收敛半径、收敛区间和收敛域,注意收敛区间和收敛域的区别(2009年(11)题);

      5) 简单幂级数的和函数的求法(2005年(18)题;2006年(19)题;2009年(19)题;2014年(18)

      题);

      6) 能够灵活利用幂级数的性质将函数展成幂级数(2007年(20)题);

      通过研究真题,同学们发现前五年真题中无穷级数都是以客观题的形式出现的,都没有以解答题的方

      式出现,甚至有的同学还坚信2014考解答题的可能性很小。但是,如果再仔细研究一下近十年真题,你会发现2014数三考查幂级数求和问题之前考过的,所以2014以解答题的方式考查幂级数的求和也是情理之中的事情。同时,上课期间文都教育老师把这类型的题目着重讲过,相信学生都能够把这道题目完完整整地解答出来。这也充分说明了一个问题,平时复习的时候一定要按照考试大纲的要求复习,不遗漏任何知识点,每一个知识点和其对应的常见题型的基本解题方法一定掌握。同时也给2015考生一个警示, 历年真题是至关重要的,对于真题中出现过的题型一定要搞明白,具备举一反三的能力。

    文都网校2021考研(复试)交流群:749245763【加群

    文都2021考研(复试)交流群2群:795254737【加群

    文都2022考研交流群1群:934041692【加群

    文都2022考研交流群2群:961883652【加群

    热门课程
    热文排行